Kernel Density Estimation of traffic accidents in a network space
نویسندگان
چکیده
A standard planar Kernel Density Estimation (KDE) aims to produce a smooth density surface of spatial point events over a 2-D geographic space. However the planar KDE may not be suited for characterizing certain point events, such as traffic accidents, which usually occur inside a 1-D linear space, the roadway network. This paper presents a novel network KDE approach to estimating the density of such spatial point events. One key feature of the new approach is that the network space is represented with basic linear units of equal network length, termed lixel (linear pixel), and related network topology. The use of lixel not only facilitates the systematic selection of a set of regularly spaced locations along a network for density estimation, but also makes the practical application of the network KDE feasible by significantly improving the computation efficiency. The approach is implemented in the ESRI ArcGIS environment and tested with the year 2005 traffic accident data and a road network in the Bowling Green, Kentucky area. The test results indicate that the new network KDE is more appropriate than standard planar KDE for density estimation of traffic accidents, since the latter covers space beyond the event context (network space) and is likely to overestimate the density values. The study also investigates the impacts on density calculation from two kernel functions, lixel lengths, and search bandwidths. It is found that the kernel function is least important in structuring the density pattern over network space, whereas the lixel length critically impacts the local variation details of the spatial density pattern. The search bandwidth imposes the highest influence by controlling the smoothness of the spatial pattern, showing local effects at a narrow bandwidth and revealing " hot spots " at larger or global scales with a wider bandwidth. More significantly, the idea of representing a linear network by a network system of equal-length lixels may potentially 3 lead the way to developing a suite of other network related spatial analysis and modeling methods.
منابع مشابه
Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection
The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...
متن کاملA kernel density estimation method for networks, its computational method and a GIS-based tool
We develop a kernel density estimation method for estimating the density of points on a network and implement the method in the GIS environment. This method could be applied to, for instance, finding 'hot spots' of traffic accidents, street crimes or leakages in gas and oil pipe lines. We first show that the application of the ordinary two-dimensional kernel method to density estimation on a ne...
متن کاملUsing Entropy Spaces and Mixtures of Gaussian Distributions to Characterize Traffic Anomalies
In this paper, a technique for detecting anomalous behavior traffic in a computer network is presented. Entropy space method is based on a 3D-space built on a flow-packet level. The complete set of points obtained in the 3D-space can be seen as a data cloud. Each 3D point in the space is a value of the obtained clusters for each slot of the network traffic. The selected features for the set of ...
متن کاملA Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China
Research on spatial cluster detection of traffic crash (TC) at the city level plays an essential role in safety improvement and urban development. This study aimed to detect spatial cluster pattern and identify riskier road segments (RRSs) of TC constrained by network with a two-step integrated method, called NKDE-GLINCS combining density estimation and spatial autocorrelation. The first step i...
متن کاملAn Integrated Spatial Clustering Analysis Method for Identifying Urban Fire Risk Locations in a Network-Constrained Environment: A Case Study in Nanjing, China
The spatial distribution of urban geographical events is largely constrained by the road network, and research on spatial clusters of fire accidents at the city level plays a crucial role in emergency rescue and urban planning. For example, by knowing where and when fire accidents usually occur, fire enforcement can conduct more efficient aid measures and planning department can work out more r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers, Environment and Urban Systems
دوره 32 شماره
صفحات -
تاریخ انتشار 2008